Chaos-Driven Encryption: A New Frontier For IoT Image Security Using Multi-Linear Systems
Keywords:
Internet of Things; Pseudo Hadamard Transformation; Chaos-based diffusion; Pixel scrambling; Lightweight encryption.Abstract
In the context of an increasingly digital world, safeguarding sensitive visual information from unauthorized access is essential, particularly within resource-constrained Internet of Things (IoT) environments. This study introduces a novel image encryption method leveraging a Pseudo Hadamard Transformation (PHT), designed to provide a lightweight and efficient alternative to conventional pixel scrambling techniques. The proposed approach integrates chaos-based diffusion methods, which significantly enhance the encryption framework by effectively obscuring the correlation between the original image (plaintext) and the encrypted image (ciphertext). Through rigorous evaluations, the method demonstrates impressive statistical security metrics, achieving a Number of Pixels Change Rate (NPCR) of 99.6064 for the Lenna image, indicating a high degree of pixel alteration in response to single-pixel changes. Additionally, a Unified Average Changing Intensity (UACI) value of 33.4682 for the Lenna image highlights considerable intensity variations, further reinforcing the encryption's robustness. Compared to existing encryption techniques, the proposed method excels in both NPCR and UACI values, underscoring its superior performance and security capabilities. This hybrid encryption scheme, characterized by its efficient computational requirements and strong security features, is particularly well-suited for IoT applications, where maintaining a balance between data protection and resource limitations is paramount. The findings suggest that PHT, coupled with chaos-based diffusion, offers a promising solution for enhancing visual data security in modern digital environments.
Downloads
References
Gebereselassie, S.A., Roy, B.K. (2024). Comparative analysis of image encryption based on 1D maps and their integrated chaotic maps. Multimedia Tools and Applications, 83, 69511–69533. https://doi.org/10.1007/s11042-024-18319-4
Bingxue Jin, Liuqin Fan, Bowen Zhang, Rongqing Lei, Lingfeng Liu, (2024). Image encryption hiding algorithm based on digital time-varying delay chaos model and compression sensing technique. iScience, 27, 110717. https://doi.org/10.1016/j.isci.2024.110717
Zeng, L., Chang, Y., Zhang, X. (2024). Cryptographic enhancement of image data security through quantum-classical hybrid encryption with parameterized pixel ratios. Quantum Inf Process 23, 244. https://doi.org/10.1007/s11128-024-04431-9
Chai, X., Gan, Z., Chen, Y., & Zhang, Y. (2017). A visually secure image encryption scheme based on compressive sensing. Signal Processing, 134, 35–51. https://doi.org/10.1016/j.sigpro.2016.11.016
Prajwalasimha, S.N. (2019). Pseudo-Hadamard Transformation-Based Image Encryption Scheme. Studies in Computational Intelligence, 771. 575-583. https://doi.org/10.1007/978-981-10-8797-4_58
Charania, I., & Li, X. (2020). Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet of Things, 9, 100142. https://doi.org/10.1016/j.iot.2019.100142
Chen, J., Zhu, Z., Fu, C., Yu, H., & Zhang, L. (2015). An efficient image encryption scheme using gray code-based permutation approach. Optics and Lasers in Engineering, 67, 191–204. https://doi.org/10.1016/j.optlaseng.2014.11.017
Dhopavkar, T. A., Nayak, S. K., & Roy, S. (2022). IETD: A novel image encryption technique using Tinkerbell map and Duffing map for IoT applications. Multimedia Tools and Applications, 81, 43189–43228. https://doi.org/10.1007/s11042-022-13162-x
Dweik, H., & Abutaha, M. (2022). A survey of lightweight image encryption for IoT. In Lightweight Cryptographic Techniques and Cybersecurity Approaches (IntechOpen). https://doi.org/10.5772/intechopen.104431
Dwivedi, A. D., & Srivastava, G. (2023). Security analysis of lightweight IoT encryption algorithms: SIMON and SIMECK. Internet of Things, 21, 100677. https://doi.org/10.1016/j.iot.2022.100677
Essaid, M., Akharraz, I., & Saaidi, A. et al. (2019). Image encryption scheme based on a new secure variant of Hill cipher and 1D chaotic maps. Journal of Information Security and Applications, 47, 173–187. https://doi.org/10.1016/j.jisa.2019.05.006
Fu, C., Lin, B., Miao, Y., Liu, X., & Chen, J. (2011). A novel chaos-based bit-level permutation scheme for digital image encryption. Optical Communications, 284, 5415–5423. https://doi.org/10.1016/j.optcom.2011.08.013
Gao, H., & Wang, X. (2021). Chaotic image encryption algorithm based on zigzag transform with bidirectional crossover from random position. IEEE Access, 9, 105627–105640. https://doi.org/10.1109/ACCESS.2021.3099214
Hasan, M. K., Shafiq, M., Islam, S., Pandey, B., Baker El-Ebiary, Y. A., Nafi, N. S., Ciro Rodriguez, R., & Vargas, D. E. (2021). Lightweight cryptographic algorithms for guessing attack protection in complex internet of things applications. Complexity, 2021, e5540296. https://doi.org/10.1155/2021/5540296
Hosny, K. M., Kamal, S. T., & Darwish, M. M. (2022). A color image encryption technique using block scrambling and chaos. Multimedia Tools and Applications, 81, 505–525. https://doi.org/10.1007/s11042-021-11384-z
Jiang, X., Xie, Y., Liu, B., Chai, J., Ye, Y., Song, T., Feng, M., & Yuan, H. (2023). Image encryption based on actual chaotic mapping using optical reservoir computing. Nonlinear Dynamics, 111, 15531–15555. https://doi.org/10.1007/s11071-023-08666-6
Karawia, A. A., & Elmasry, Y. A. (2021). New encryption algorithm using bit-level permutation and non-invertible chaotic map. IEEE Access, 9, 101357–101368. https://doi.org/10.1109/ACCESS.2021.3096995
Kumari, P., & Mondal, B. (2023). An encryption scheme based on grain stream cipher and chaos for privacy protection of image data on IoT network. Wireless Personal Communications, 130, 2261–2280. https://doi.org/10.1007/s11277-023-10382-8
Lai, Q., Hu, G., Erkan, U., & Toktas, A. (2023). High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map. Applied Mathematics and Computation, 442, 127738. https://doi.org/10.1016/j.amc.2022.127738
Lee, I. (2019). The Internet of Things for enterprises: An ecosystem, architecture, and IoT service business model. Internet of Things, 7, 100078. https://doi.org/10.1016/j.iot.2019.100078
Li, C., Li, S., Alvarez, G., Chen, G., & Lo, K. T. (2007). Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations. Physics Letters A, 369, 23–30. https://doi.org/10.1016/j.physleta.2007.04.023
Li, H., Hu, Y., Shi, Z., Wang, B., & Zheng, P. (2022). An image encryption algorithm based on improved lifting-like structure and cross-plane zigzag transform. IEEE Access, 10, 82305–82318. https://doi.org/10.1109/ACCESS.2022.3194730
Li, S., Zhao, L., & Yang, N. (2021). Medical image encryption based on 2D zigzag confusion and dynamic diffusion. Security and Privacy, 2021, e6624809. https://doi.org/10.1155/2021/6624809
Li, X.-Z., Chen, W.-W., & Wang, Y.-Q. (2018). Quantum image compression-encryption scheme based on quantum discrete cosine transform. International Journal of Theoretical Physics, 57, 2904–2919. https://doi.org/10.1007/s10773-018-3810-7
Liu, H., Kadir, A., & Xu, C. (2020). Cryptanalysis and constructing S-Box based on chaotic map and backtracking. Applied Mathematics and Computation, 376, 125153. https://doi.org/10.1016/j.amc.2020.125153
Liu, H., Liu, J., & Ma, C. (2022). Constructing dynamic strong S-Box using 3D chaotic map and application to image encryption. Multimedia Tools and Applications, 82, 23899–23914. https://doi.org/10.1007/s11042-022-12069-x
Liu, R., Liu, H., & Zhao, M. (2023). Reveal the correlation between randomness and Lyapunov exponent of n-dimensional non-degenerate hyper chaotic map. Integration, 93, 102071. https://doi.org/10.1016/j.vlsi.2023.102071
Liu, W., Sun, K., & Zhu, C. (2016). A fast image encryption algorithm based on chaotic map. Optics and Lasers in Engineering, 84, 26–36. https://doi.org/10.1016/j.optlaseng.2016.03.019
Long, G., Chai, X., Gan, Z., Jiang, D., He, X., & Sun, M. (2023). Exploiting one-dimensional exponential Chebyshev chaotic map and matching embedding for visually meaningful image encryption. Chaos, Solitons & Fractals, 176, 114111. https://doi.org/10.1016/j.chaos.2023.114111
Mahdi, M. S., Hassan, N. F., & Abdul-Majeed, G. H. (2021). An improved ChaCha algorithm for securing data on IoT devices. SN Applied Sciences, 3, 429. https://doi.org/10.1007/s42452-021-04425-7
Mondal, B. (2019). Cryptographic image scrambling techniques. In Cryptographic and Information Security Approaches for Images and Videos (1st ed.). CRC Press. https://doi.org/10.1201/9780429435461
Mondal, B., Mandal, T., Kumar, P., & Biswas, N. (2017). A secure partial encryption scheme based on bit plane manipulation. In 2017 7th International Symposium on Embedded Computing and System Design (ISED), 1–5. https://doi.org/10.1109/ISED.2017.8303925
Mondal, B., & Singh, J. P. (2022). A lightweight image encryption scheme based on chaos and diffusion circuit. Multimedia Tools and Applications, 81, 34547–34571. https://doi.org/10.1007/s11042-021-11657-7
Panahi, P., Bayılmış, C., Çavuşoğlu, U., & Kaçar, S. (2021). Performance evaluation of lightweight encryption algorithms for IoT-based applications. Arabian Journal for Science and Engineering, 46, 4015–4037. https://doi.org/10.1007/s13369-021-05358-4
SaberiKamarposhti, M., Ghorbani, A., & Yadollahi, M. (2024). A comprehensive survey on image encryption: Taxonomy, challenges, and future directions. Chaos, Solitons & Fractals, 178, 114361. https://doi.org/10.1016/j.chaos.2023.114361
Setiadi, D. R. I. M., Rachmawanto, E. H., Sari, C. A., Susanto, A., & Doheir, M. (2018). A comparative study of image cryptographic method. In 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 336–341. https://doi.org/10.1109/ICITACEE.2018.8576907
Setyaningsih, E., Iswahyudi, C., & Widyastuti, N. (2012). Image encryption on mobile phone using super encryption algorithm. TELKOMNIKA Telecommunication Computing Electronics and Control, 10, 815–824. https://doi.org/10.12928/telekomnika.v10i4.871
Seyhan, K., Nguyen, T. N., Akleylek, S., & Cengiz, K. (2022). Lattice-based cryptosystems for the security of resource-constrained IoT devices in a post-quantum world: A survey. Cluster Computing, 25, 1729–1748. https://doi.org/10.1007/s10586-021-03380-7
Singh, S., Sharma, P. K., Moon, S. Y., & Park, J. H. (2017). Advanced lightweight encryption algorithms for IoT devices: Survey, challenges and solutions. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-017-0494-4
Singh, Y. K. (2021). A lightweight exchangeable encryption scheme for IoT devices based on Vigenère cipher and MLS keystream. In P. K. Singh, A. Noor, M. H. Kolekar, S. Tanwar, R. K. Bhatnagar, & S. Khanna (Eds.), Evolving Technologies for Computing, Communication and Smart World (pp. 165–180). Springer, Singapore. https://doi.org/10.1007/978-981-15-7804-5_13
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 14, 4724–4734. https://doi.org/10.1109/TII.2018.2852491
Sultana, T., Almogren, A., Akbar, M., Zuair, M., Ullah, I., & Javaid, N. (2020). Data sharing system integrating access control mechanism using blockchain-based smart contracts for IoT devices. Applied Sciences, 10, 488. https://doi.org/10.3390/app10020488
Suri, S., & Vijay, R. (2019). A synchronous intertwining logistic map-DNA approach for color image encryption. Journal of Ambient Intelligence and Humanized Computing, 10, 2277–2290. https://doi.org/10.1007/s12652-018-0825-0
Susanto, A., Setiadi, D. R. I. M., Rachmawanto, E. H., Mulyono, I. U. W., Sari, C. A., Sarker, M. K., & Sazal, M. R. (2020). Triple layer image security using bit-shift, chaos, and stream encryption. Bulletin of Electrical Engineering and Informatics, 9, 980–987. https://doi.org/10.11591/eei.v9i3.2001
National Institute of Standards and Technology. (2001). Advanced Encryption Standard (AES). Federal Information Processing Standard (FIPS 197). U.S. Department of Commerce. https://doi.org/10.6028/NIST.FIPS.197-upd1
Trujillo-Toledo, D. A., López-Bonilla, O. R., García-Guerrero, E. E., Tlelo-Cuautle, E., López-Mancilla, D., Guillén-Fernández, O., & Inzunza-González, E. (2021). Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps. Chaos, Solitons & Fractals, 153, 111506. https://doi.org/10.1016/j.chaos.2021.111506
Wang, J., & Liu, L. (2022). A novel chaos-based image encryption using magic square scrambling and octree diffusing. Mathematics, 10, 457. https://doi.org/10.3390/math10030457
Wang, X., & Guo, K. (2014). A new image alternate encryption algorithm based on chaotic map. Nonlinear Dynamics, 76, 1943–1950. https://doi.org/10.1007/s11071-014-1259-7
Wang, X., Liu, C., & Zhang, H. (2016). An effective and fast image encryption algorithm based on chaos and interweaving of ranks. Nonlinear Dynamics, 84, 1595–1607. https://doi.org/10.1007/s11071-015-2590-3
Wang, X., & Si, R. (2021). A new chaotic image encryption scheme based on dynamic L-shaped scrambling and combined map diffusion. Optik, 245, 167658. https://doi.org/10.1016/j.ijleo.2021.167658
Wang, X., & Sun, H. (2019). A chaotic image encryption algorithm based on zigzag-like transform and DNA-like coding. Multimedia Tools and Applications, 78, 34981–34997. https://doi.org/10.1007/s11042-019-08085-z
Wang, X., Wang, Y., Zhu, X., & Unar, S. (2019). Image encryption scheme based on chaos and DNA plane operations. Multimedia Tools and Applications, 78, 26111–26128. https://doi.org/10.1007/s11042-019-07794-9
Williams, P., Dutta, I. K., Daoud, H., & Bayoumi, M. (2022). A survey on security in the internet of things with a focus on the impact of emerging technologies. Internet of Things, 19, 100564. https://doi.org/10.1016/j.iot.2022.100564
Wu, Y., & Agaian, S. (2011). NPCR and UACI randomness tests for image encryption. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), pp. 31–38.
Xian, Y., Wang, X., Wang, X., Li, Q., & Yan, X. (2022). Spiral-transform-based fractal sorting matrix for chaotic image encryption. IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 3320–3327. https://doi.org/10.1109/TCSI.2022.3172116
Xu, D., & Liu, H. (2023). A strong key expansion algorithm based on nondegenerate 2D chaotic map over GF(2n). International Journal of Bifurcation and Chaos, 33, 2350177. https://doi.org/10.1142/S0218127423501778
Xu, L., Li, Z., Li, J., & Hua, W. (2016). A novel bit-level image encryption algorithm based on chaotic maps. Optics and Lasers in Engineering, 78, 17–25. https://doi.org/10.1016/j.optlaseng.2015.09.007
Yu, H., & Kim, Y. (2020). New RSA encryption mechanism using one-time encryption keys and unpredictable bio-signal for wireless communication devices. Electronics, 9, 246. https://doi.org/10.3390/electronics9020246
Zahid, S., Mazhar, M. S., Abbas, S. G., Hanif, Z., Hina, S., & Shah, G. A. (2023). Threat modeling in smart firefighting systems: Aligning MITRE ATT&CK matrix and NIST security controls. Internet of Things, 22, 100766. https://doi.org/10.1016/j.iot.2023.100766
Zhang, B., & Liu, L. (2023). Chaos-based image encryption: Review, application, and challenges. Mathematics, 11, 2585. https://doi.org/10.3390/math11112585
Zhang, T., & Wang, S. (2023). Image encryption scheme based on a controlled zigzag transform and bit-level encryption under the quantum walk. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.1097754
Zhang, W., Xu, J., & Zhao, B. (2023). DNA image encryption algorithm based on serrated spiral scrambling and cross bit plane. Journal of King Saud University - Computer and Information Sciences, 35, 101858. https://doi.org/10.1016/j.jksuci.2023.101858
Zhang, X., Liu, M., Tian, J., & Gong, Z. (2022). Color image encryption algorithm based on dynamic block zigzag transformation and six-sided star model. Electronics, 11, 2512. https://doi.org/10.3390/electronics11162512
Zhao, M., Liu, H., & Niu, Y. (2023). Batch generating keyed strong S-Boxes with high nonlinearity using 2D hyper chaotic map. Integration, 92, 91–98. https://doi.org/10.1016/j.vlsi.2023.05.006
Zheng, J., & Lv, T. (2022). Image encryption algorithm based on cascaded chaotic map and improved zigzag transform. IET Image Processing, 16, 3863–3875. https://doi.org/10.1049/ipr2.12600
Zhou, Y., Panetta, K., Agaian, S., & Chen, C. L. P. (2012). Image encryption using P-Fibonacci transform and decomposition. Optics Communications, 285, 594–608. https://doi.org/10.1016/j.optcom.2011.11.044
Zhou, Y., Panetta, K., Agaian, S., & Chen, C. L. P. (2013). (n, k, p)-Gray code for image systems. IEEE Transactions on Cybernetics, 43, 515–529. https://doi.org/10.1109/TSMCB.2012.2210706
Zhang, X., Liu, M., & Yang, X. (2023). Color image encryption algorithm based on cross-spiral transformation and zone diffusion. Mathematics, 11(14), 3228. https://doi.org/10.3390/math11143228
Murillo-Escobar, M. A., Meranza-Castillón, M. O., López-Gutiérrez, R. M., & Cruz-Hernández, C. (2019). Suggested integral analysis for chaos-based image cryptosystems. Entropy, 21(8), 815. https://doi.org/10.3390/e21080815
İnce, C., İnce, K. & Hanbay, D. (2024). Novel image pixel scrambling technique for efficient color image encryption in resource-constrained IoT devices. Multimedia Tools and Applications, 83, 72789–72817. https://doi.org/10.1007/s11042-024-18620-2
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Information Systems Research and Practice
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.