THE HEALTH BENEFITS OF FERMENTED FOOD: A NARRATIVE REVIEW
Main Article Content
Abstract
Fermented foods are consumed in many parts of the world since ancient times and they include dairy products, meat, fruits, vegetables, and alcoholic beverages. These foods have been documented to be beneficial to human health due to the microbial content, which mainly consists of probiotics of various bacterial and fungal species. Fermented food probiotics can modulate gastrointestinal health, thereby affecting other bodily systems such as the immune system and brain functions. The microbial and nutritional content of fermented foods may also contribute to reducing cardiovascular risks and improving metabolic syndrome parameters. Fermented foods have antimicrobial properties that can aid in suppressing the growth of pathogenic microbes. In addition, fermented foods may impart beneficial effects to the nervous system, which include improvement of cognitive function and a decrease in the symptoms of depression, anxiety, and stress. Literature relating to the benefit of fermented foods on different aspects of human health is sparse which poses significant limitations on understanding the relationship between fermenting foods and human health. This paper describes different types of fermented foods containing the relevant micro-organisms associated with the improvement of several health conditions.
Downloads
Article Details
Transfer of Copyrights
- In the event of publication of the manuscript entitled [INSERT MANUSCRIPT TITLE AND REF NO.] in the Malaysian Journal of Science, I hereby transfer copyrights of the manuscript title, abstract and contents to the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) for the full legal term of copyright and any renewals thereof throughout the world in any format, and any media for communication.
Conditions of Publication
- I hereby state that this manuscript to be published is an original work, unpublished in any form prior and I have obtained the necessary permission for the reproduction (or am the owner) of any images, illustrations, tables, charts, figures, maps, photographs and other visual materials of whom the copyrights is owned by a third party.
- This manuscript contains no statements that are contradictory to the relevant local and international laws or that infringes on the rights of others.
- I agree to indemnify the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) in the event of any claims that arise in regards to the above conditions and assume full liability on the published manuscript.
Reviewer’s Responsibilities
- Reviewers must treat the manuscripts received for reviewing process as confidential. It must not be shown or discussed with others without the authorization from the editor of MJS.
- Reviewers assigned must not have conflicts of interest with respect to the original work, the authors of the article or the research funding.
- Reviewers should judge or evaluate the manuscripts objective as possible. The feedback from the reviewers should be express clearly with supporting arguments.
- If the assigned reviewer considers themselves not able to complete the review of the manuscript, they must communicate with the editor, so that the manuscript could be sent to another suitable reviewer.
Copyright: Rights of the Author(s)
- Effective 2007, it will become the policy of the Malaysian Journal of Science (published by the Faculty of Science, University of Malaya) to obtain copyrights of all manuscripts published. This is to facilitate:
- Protection against copyright infringement of the manuscript through copyright breaches or piracy.
- Timely handling of reproduction requests from authorized third parties that are addressed directly to the Faculty of Science, University of Malaya.
- As the author, you may publish the fore-mentioned manuscript, whole or any part thereof, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given. You may produce copies of your manuscript, whole or any part thereof, for teaching purposes or to be provided, on individual basis, to fellow researchers.
- You may include the fore-mentioned manuscript, whole or any part thereof, electronically on a secure network at your affiliated institution, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- You may include the fore-mentioned manuscript, whole or any part thereof, on the World Wide Web, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- In the event that your manuscript, whole or any part thereof, has been requested to be reproduced, for any purpose or in any form approved by the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers), you will be informed. It is requested that any changes to your contact details (especially e-mail addresses) are made known.
Copyright: Role and responsibility of the Author(s)
- In the event of the manuscript to be published in the Malaysian Journal of Science contains materials copyrighted to others prior, it is the responsibility of current author(s) to obtain written permission from the copyright owner or owners.
- This written permission should be submitted with the proof-copy of the manuscript to be published in the Malaysian Journal of Science
Licensing Policy
Malaysian Journal of Science is an open-access journal that follows the Creative Commons Attribution-Non-commercial 4.0 International License (CC BY-NC 4.0)
CC BY – NC 4.0: Under this licence, the reusers to distribute, remix, alter, and build upon the content in any media or format for non-commercial purposes only, as long as proper acknowledgement is given to the authors of the original work. Please take the time to read the whole licence agreement (https://creativecommons.org/licenses/by-nc/4.0/legalcode ).
References
Al-Sadi, R., Dharmaprakash, V., Nighot, P., Guo, S., Nighot, M., Do, T., & Ma, T. Y. (2021). Bifidobacterium bifidum Enhances the Intestinal Epithelial Tight Junction Barrier and Protects against Intestinal Inflammation by Targeting the Toll-like Receptor-2 Pathway in an NF-κB-Independent Manner. International Journal of Molecular Sciences, 22(15), 8070.
An, S.-Y., Lee, M. S., Jeon, J. Y., Ha, E. S., Kim, T. H., Yoon, J. Y., Ok, C.-O., Lee, H.-K., Hwang, W.-S., Choe, S. J., Han, S. J., Kim, H. J., Kim, D. J., & Lee, K.-W. (2013). Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Annals of Nutrition and Metabolism, 63, 111–119.
Anal, A. K., Perpetuini, G., Petchkongkaew, A., Tan, R., Avallone, S., Tofalo, R., Nguyen, H. Van, Chu-Ky, S., Ho, P. H., Phan, T. T., & Waché, Y. (2020). Food safety risks in traditional fermented food from South-East Asia. Food Control, 109, 106922.
Ano, Y., Ozawa, M., Kutsukake, T., Sugiyama, S., Uchida, K., Yoshida, A., & Nakayama, H. (2015). Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity. PLOS ONE, 10(3), e0118512.
Ano, Y., Yoshino, Y., Uchida, K., & Nakayama, H. (2019). Preventive Effects of Tryptophan–Methionine Dipeptide on Neural Inflammation and Alzheimer’s Pathology. International Journal of Molecular Sciences, 20(13), 3206.
Babio, N., Becerra-Tomás, N., Martínez-González, M. Á., Corella, D., Estruch, R., Ros, E., Sayón-Orea, C., Fitó, M., Serra-Majem, L., Arós, F., Lamuela-Raventós, R. M., Lapetra, J., Gómez-Gracia, E., Fiol, M., Díaz-López, A., Sorlí, J. V, Martínez, J. A., & Salas-Salvadó, J. (2015). Consumption of yogurt, low-fat milk, and other low-fat dairy products is associated with lower risk of metabolic syndrome incidence in an elderly Mediterranean population. The Journal of Nutrition, 145(10), 2308–2316.
Bautista-Gallego, J., Ferrocino, I., Botta, C., Ercolini, D., Cocolin, L., & Rantsiou, K. (2019). Probiotic potential of a Lactobacillus rhamnosus cheese isolate and its effect on the fecal microbiota of healthy volunteers. Food Research International, 119, 305–314.
Berni Canani, R., De Filippis, F., Nocerino, R., Laiola, M., Paparo, L., Calignano, A., De Caro, C., Coretti, L., Chiariotti, L., Gilbert, J. A., & Ercolini, D. (2017). Specific signatures of the gut microbiota and increased levels of butyrate in children treated with fermented cow’s milk containing heat-killed Lactobacillus paracasei CBA L74. Applied and Environmental Microbiology, 83(19), e01206-17.
Bhagat, D., Raina, N., Kumar, A., Katoch, M., Khajuria, Y., Slathia, P. S., & Sharma, P. (2020). Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Scientific Reports, 10, 1926.
Bourrie, B. C. T., Cotter, P. D., & Willing, B. P. (2018). Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity. Journal of Functional Foods, 46, 29–37.
Chen, J. K. H., & Lim, Y. S. (2018). Isolation, identification and characterization of enzyme-producing lactic acid bacteria from traditional fermented foods. Bioscience Horizons: The International Journal of Student Research, 11, hzy004.
Chen, Y.-C., Tao, N.-L., Hu, S.-Y., Tsai, H.-Y., Liao, S.-C., Tsai, W.-L., & Hu, C.-Y. (2021). Effect of Tempeh on Gut Microbiota and Anti-Stress Activity in Zebrafish. International Journal of Molecular Sciences, 22, 12660.
Corpuz, H. M., Fujii, H., Nakamura, S., & Katayama, S. (2019). Fermented rice peptides attenuate scopolamine-induced memory impairment in mice by regulating neurotrophic signaling pathways in the hippocampus. Brain Research, 1720, 146322.
Crovesy, L., Masterson, D., & Rosado, E. L. (2020). Profile of the gut microbiota of adults with obesity: a systematic review. European Journal of Clinical Nutrition, 74(9), 1251–1262.
Daglia, M., Di Lorenzo, A., Nabavi, S. F., Sureda, A., Khanjani, S., Moghaddam, A. H., Braidy, N., & Nabavi, S. M. (2017). Improvement of Antioxidant Defences and Mood Status by Oral GABA Tea Administration in a Mouse Model of Post-Stroke Depression. Nutrients, 9(5), 446.
Demir, H. (2020). Comparison of traditional and commercial kefir microorganism compositions and inhibitory effects on certain pathogens. International Journal of Food Properties, 23(1), 375–386.
Diaz, M., Kellingray, L., Akinyemi, N., Adefiranye, O. O., Olaonipekun, A. B., Bayili, G. R., Ibezim, J., du Plessis, A. S., Houngbédji, M., Kamya, D., Mukisa, I. M., Mulaw, G., Josiah, S. M., Chienjo, W. O., Atter, A., Agbemafle, E., Annan, T., Ackah, N. B., Buys, E. M., … Narbad, A. (2019). Comparison of the microbial composition of African fermented foods using amplicon sequencing. Scientific Reports, 9, 13863.
Dimidi, E., Cox, S. R., Rossi, M., & Whelan, K. (2019). Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8), 1806.
Djeni, T. N., Kouame, K. H., Ake, F. D. M., Amoikon, L. S. T., Dje, M. K., & Jeyaram, K. (2020). Microbial diversity and metabolite profiles of palm wine produced From three different palm tree species in Côte d’Ivoire. Scientific Reports, 10, 1715.
Domingos‐Lopes, M. F. P., Stanton, C., Ross, P. R., & Silva, C. C. G. (2020). Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. Journal of Applied Microbiology, 129(6), 1428–1440.
Eltayeb, M. M., Eltigani, S. A., & Taniguchi, T. (2020). Pyrosequencing scrutiny of bacterial and fungal communities in two Sudanese sorghum-based fermented foods. Annals of Microbiology, 70, 53.
Embark, H. M., & Abdalla, A. K. (2019). Evaluation of sedative effects of daily consumption of yoghurt in rats. Assiut Veterinary Medical Journal, 65(163), 38–46.
Galland, L. (2014). The Gut Microbiome and the Brain. Journal of Medicinal Food, 17(12), 1261–1272.
Gille, D., Schmid, A., Walther, B., & Vergères, G. (2018). Fermented food and non-communicable chronic diseases: A review. Nutrients, 10(4), 448.
Gupta, A., & Sharma, N. (2017). In vitro characterization of lactic acid bacteria isolated from lasoda bari - A rare fermented food of Himachal Pradesh-India for potential probiotic attributes. Journal of Microbiology, Biotechnology and Food Sciences, 6(6), 1323–1328.
Han, K., Bose, S., Wang, J., Kim, B.-S., Kim, M. J., Kim, E.-J., & Kim, H. (2015). Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Molecular Nutrition & Food Research, 59(5), 1004–1008.
Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals, 11(4), 979.
Hilimire, M. R., DeVylder, J. E., & Forestell, C. A. (2015). Fermented foods, neuroticism, and social anxiety: An interaction model. Psychiatry Research, 228(2), 203–208.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Berni Canani, R., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.
Hong, S. P., Lee, E. J., Kim, Y. H., & Ahn, D. U. (2016). Effect of Fermentation Temperature on the Volatile Composition of Kimchi. Journal of Food Science, 81(11), C2623–C2629.
Hor, P. K., Ray, M., Pal, S., Ghosh, K., Soren, J. P., Maiti, S., Bera, D., Singh, S., Dwivedi, S., Takó, M., DasMohapatra, P. K., & Mondal, K. C. (2019). Some functional properties of khambir, an ethnic fermented cereal-based food of Western Himalayas. Frontiers in Microbiology, 10, 730.
Hwang, Y.-H., Park, S., Paik, J.-W., Chae, S.-W., Kim, D.-H., Jeong, D.-G., Ha, E., Kim, M., Hong, G., Park, S.-H., Jung, S.-J., Lee, S.-M., Na, K.-H., Kim, J., & Chung, Y.-C. (2019). Efficacy and Safety of Lactobacillus Plantarum C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients, 11, 305.
Intelligence, M. (2021). Global fermented foods and beverages market (2022 - 2027). Mordor Intelligence. https://www.mordorintelligence.com/industry-reports/fermented-foods-beverages-market
Irfan, M., Kim, M., Kim, K.-S., Kim, T.-H., Kim, S.-D., Hong, S.-B., Kim, H. K., & Rhee, M. H. (2019). Fermented Garlic Ameliorates Hypercholesterolemia and Inhibits Platelet Activation. Evidence-Based Complementary and Alternative Medicine, Article ID 3030967.
Iwatani, S., & Yamamoto, N. (2019). Functional food products in Japan: A review. Food Science and Human Wellness, 8, 96–101.
Jeong, D.-Y., Ryu, M. S., Yang, H.-J., & Park, S. (2021). γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut–Microbiome–Brain Axis. Foods, 10(2), 221.
Jiang, S., Liu, H., Liu, Z., Liu, N., Liu, R., Kang, Y.-R., Ji, J.-G., Zhang, C., Hua, B., & Kang, S.-J. (2017). Adjuvant effects of fermented red ginseng extract on advanced non-small cell lung cancer patients treated with chemotherapy. Chinese Journal of Integrative Medicine, 23(5), 331–337.
Jones, R., Latinovic, R., Charlton, J., & Gulliford, M. (2006). Physical and psychological co-morbidity in irritable bowel syndrome: a matched cohort study using the General Practice Research Database. Alimentary Pharmacology and Therapeutics, 24(5), 879–886.
Katagiri, R., Sawada, N., Goto, A., Yamaji, T., Iwasaki, M., Noda, M., Iso, H., & Tsugane, S. (2020). Association of soy and fermented soy product intake with total and cause specific mortality: prospective cohort study. BMJ, 368, m34–m34.
Kato-Kataoka, A., Nishida, K., Takada, M., Suda, K., Kawai, M., Shimizu, K., Kushiro, A., Hoshi, R., Watanabe, O., Igarashi, T., Miyazaki, K., Kuwano, Y., & Rokutan, K. (2016). Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Beneficial Microbes, 7(2), 153–156.
Kaur, S., Amrita, Kaur, P., & Nagpal, R. (2015). In vitro biosurfactant production and biofilm inhibition by lactic acid bacteria isolated from fermented food products. International Journal of Probiotics and Prebiotics, 10(1), 17–22.
Khalil, E. S., Manap, M. Y., Mustafa, S., Amid, M., Alhelli, A. M., & Aljoubori, A. (2018). Probiotic characteristics of exopolysaccharides-producing lactobacillus isolated from some traditional Malaysian fermented foods. CyTA - Journal of Food, 16(1), 287–298.
Khuropakhonphong, R., Whanmek, K., Purttiponthanee, S., Chathiran, W., Srichamnong, W., Santivarangkna, C., & Trachootham, D. (2021). Bulgarian yogurt relieved symptoms and distress and increased fecal short-chain fatty acids in healthy constipated women: A randomized, blinded crossover controlled trial. NFS Journal, 22, 20–31.
Kim, C., Ri, K., & Choe, S. (2020). A novel fibrinolytic enzymes from the Korean traditional fermented food—Jotgal: Purification and characterization. Journal of Food Biochemistry, 44(7), e13255.
Kita, M., Kobayashi, K., Obara, K., Koikeda, T., Umeda, S., & Ano, Y. (2019). Supplementation With Whey Peptide Rich in β-Lactolin Improves Cognitive Performance in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Frontiers in Neuroscience, 13, 399.
Kivanc, M., & Yapici, E. (2019). Survival of Escherichia coli O157:H7 and Staphylococcus aureus during the fermentation and storage of kefir. Food Science and Technology, 39(Suppl. 1), 225–230.
Koirala, S., & Anal, A. K. (2021). Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods, 3, 100013.
Korsak, N., Taminiau, B., Leclercq, M., Nezer, C., Crevecoeur, S., Ferauche, C., Detry, E., Delcenserie, V., & Daube, G. (2015). Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments. Journal of Dairy Science, 98(6), 3684–3689.
Lim, P. S., Loke, C. F., Ho, Y. W., & Tan, H. Y. (2020). Cholesterol homeostasis associated with probiotic supplementation in vivo. Journal of Applied Microbiology, 129(5), 1374–1388.
Liu, H., Wang, J., He, T., Becker, S., Zhang, G., Li, D., & Ma, X. (2018). Butyrate: A Double-Edged Sword for Health? Advances in Nutrition, 9(1), 21–29.
Liu, Y., Wang, H., Gui, S., Zeng, B., Pu, J., Zheng, P., Zeng, L., Luo, Y., Wu, Y., Zhou, C., Song, J., Ji, P., Wei, H., & Xie, P. (2021). Proteomics analysis of the gut–brain axis in a gut microbiota-dysbiosis model of depression. Translational Psychiatry, 11(568).
Luang-In, V., Katisart, T., Konsue, A., Nudmamud-Thanoi, S., Narbad, A., Saengha, W., Wangkahart, E., Pumriw, S., Samappito, W., & Ma, N. L. (2020). Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model. Food Science of Animal Resources, 40(6), 1014–1032.
Mabunga, D. F. N., Gonzales, E. L. T., Kim, H. J., & Choung, S. Y. (2015). Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice. Biomolecules & Therapeutics, 23(3), 268–274.
Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.-F., Rougeot, C., Pichelin, M., Cazaubiel, M., & Cazaubiel, J.-M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5), 755–764.
Nadia, F. S., Wati, D. A., Isnawati, M., Sulchan, M., & Afifah, D. N. (2020). The effect of processed Tempeh Gembus to triglycerides levels and insulin resistance status in women with obesity. Food Research, 4(4), 1000–1010.
Nailufar, F., Tjandrawinata, R. R., & Suhartono, M. T. (2016). Thrombus degradation by fibrinolytic enzyme of Stenotrophomonas sp. originated from Indonesian soybean-based fermented food on Wistar rats. Advances in Pharmacological Sciences.
Nakamura, M., Hamazaki, K., Matsumura, K., Kasamatsu, H., Tsuchida, A., & Inadera, H. (2019). Infant dietary intake of yogurt and cheese and gastroenteritis at 1 year of age: The Japan Environment and Children’s Study. PLoS ONE, 14(10).
Ohland, C. L., & MacNaughton, W. K. (2010). Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298(6), G807–G819.
Ohta, H., Takebe, Y., Murakami, Y., Takahama, Y., & Morimura, S. (2017). Tyramine and β-phenylethylamine, from fermented food products, as agonists for the human trace amine-associated receptor 1 (hTAAR1) in the stomach. Bioscience, Biotechnology and Biochemistry, 81(5), 1002–1006.
Okada, Y., Tsuzuki, Y., Takeshi, T., Furuhashi, H., Higashiyama, M., Watanabe, C., Shirakabe, K., Kurihara, C., Komoto, S., Tomita, K., Nagao, S., Miura, S., & Hokari, R. (2018). Novel probiotics isolated from a Japanese traditional fermented food, Funazushi, attenuates DSS-induced colitis by increasing the induction of high integrin αv/β8-expressing dendritic cells. Journal of Gastroenterology, 53, 407–418.
Olanipekun, B., & Adelakun, O. (2015). Nutritional and microbiological attributes of soybean ( Glycine max ) during fermentation with Rhizopus oligosporus. Food Science and Quality Management, 39, 111–119.
Parker, M., Zobrist, S., Donahue, C., Edick, C., Mansen, K., Nadjari, M. H. Z., Heerikhuisen, M., Sybesma, W., Molenaar, D., Diallo, A. M., Milani, P., & Kort, R. (2018). Naturally fermented milk from Northern Senegal: Bacterial community composition and probiotic enrichment with Lactobacillus rhamnosus. Frontiers in Microbiology, 9, 2218.
Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H.-Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), 1171–1185.
Peng, Q., Jiang, S., Chen, J., Ma, C., Huo, D., Shao, Y., & Zhang, J. (2018). Unique microbial diversity and metabolic pathway features of fermented vegetables from Hainan, China. Frontiers in Microbiology, 9, 399.
Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, M. V., Rothemund, S., Gaudl, A., Ceglarek, U., Schöneberg, T., & Stäubert, C. (2019). Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genetics, 15(7), e1008283.
Phoottosavako, M., Keeratipibul, S., Techo, S., & Tanasupawat, S. (2015). Identification and characterization of lipolytic bacteria from Thai fermented foods. Malaysian Journal of Microbiology, 11(3), 231–239.
Puerari, C., Magalhães-Guedes, K. T., & Schwan, R. F. (2015). Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiology, 46, 210–217.
Putt, K. K., Pei, R., White, H. M., & Bolling, B. W. (2017). Yogurt inhibits intestinal barrier dysfunction in Caco-2 cells by increasing tight junctions. Food & Function, 8(1), 406–414.
Qu, T., Yang, L., Wang, Y., Jiang, B., Shen, M., & Ren, D. (2020). Reduction of serum cholesterol and its mechanism by Lactobacillus plantarum H6 screened from local fermented food products. Food & Function, 11(2), 1397–1409.
Rahman, K., & Billington, D. (2000). Dietary Supplementation with Aged Garlic Extract Inhibits ADP-Induced Platelet Aggregation in Humans. The Journal of Nutrition, 130(11), 2662–2665.
Rai, A. K., Sanjukta, S., & Jeyaram, K. (2017). Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Critical Reviews in Food Science and Nutrition, 57(13), 2789–2800.
Ray, M., Hor, P. K., Ojha, D., Soren, J. P., Singh, S. N., & Mondal, K. C. (2018). Bifidobacteria and its rice fermented products on diet induced obese mice: Analysis of physical status, serum profile and gene expressions. Beneficial Microbes, 9(3), 441–452.
Ren, D., Zhu, J., Gong, S., Liu, H., & Yu, H. (2018). Antimicrobial characteristics of lactic acid bacteria isolated from homemade fermented foods. BioMed Research International, Article ID 5416725.
Ribeiro, A. G., Mill, J. G., Cade, N. V., Velasquez-Melendez, G., Matos, S. M. A., & Molina, M. del C. B. (2018). Associations of Dairy Intake with Arterial Stiffness in Brazilian Adults: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients, 10(6), 701. Oxidative stress and metabolic syndrome. Life Sciences, 84(21–22), 705–712.
Saelao, S., Maneerat, S., Kaewsuwan, S., Rabesona, H., Choiset, Y., Haertlé, T., & Chobert, J.-M. (2017). Inhibition of Staphylococcus aureus in vitro by bacteriocinogenic Lactococcus lactis KTH0-1S isolated from Thai fermented shrimp (Kung-som) and safety evaluation. Archives of Microbiology, 199, 551–562.
Sahab, N. R. M., Subroto, E., Balia, R. L., & Utama, G. L. (2020). γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon, 6(11), e05526.
Sanchart, C., Rattanaporn, O., Haltrich, D., Phukpattaranont, P., & Maneerat, S. (2017). Lactobacillus futsaii CS3, a new GABA-producing strain isolated from Thai fermented shrimp (Kung-Som). Indian Journal of Microbiology, 57(2), 211–217.
Shandilya, U. K., Sharma, A., Kapila, R., & Kansal, V. K. (2016). Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice. Journal of the Science of Food and Agriculture, 96(9), 3180–3187.
Shangpliang, H. N. J., Rai, R., Keisam, S., Jeyaram, K., & Tamang, J. P. (2018). Bacterial community in naturally fermented milk products of Arunachal Pradesh and Sikkim of India analysed by high-throughput amplicon sequencing. Scientific Reports, 8, 1532.
Shimizu, H., Masujima, Y., Ushiroda, C., Mizushima, R., Taira, S., Ohue-Kitano, R., & Kimura, I. (2019). Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific Reports, 9, 16574.
Simrén, M., Öhman, L., Olsson, J., Svensson, U., Ohlson, K., Posserud, I., & Strid, H. (2009). Clinical trial: the effects of a fermented milk containing three probiotic bacteria in patients with irritable bowel syndrome - a randomized, double-blind, controlled study. Alimentary Pharmacology & Therapeutics, 31(2), 218–227.
Slyepchenko, A., Maes, M., Jacka, F. N., Köhler, C. A., Barichello, T., McIntyre, R. S., Berk, M., Grande, I., Foster, J. A., Vieta, E., & Carvalho, A. F. (2017). Gut Microbiota, Bacterial Translocation, and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non-Communicable Medical Comorbidities. Psychotherapy and Psychosomatics, 86(1), 31–46.
Sun, L., Zhao, H., Liu, L., Wu, X., Gao, Q., & Zhao, Y. (2018). Effects of Lactobacillus on the inhibition of Helicobacter pylori growth. Biotechnology and Biotechnological Equipment, 32(6), 1533–1540.
Takada, M., Nishida, K., Kataoka‐Kato, A., Gondo, Y., Ishikawa, H., Suda, K., Kawai, M., Hoshi, R., Watanabe, O., Igarashi, T., Kuwano, Y., Miyazaki, K., & Rokutan, K. (2016). Probiotic Lactobacillus casei strain Shirota relieves stress‐associated symptoms by modulating the gut–brain interaction in human and animal models. Neurogastroenterology & Motility, 28(7), 1027–1036.
Takahashi, F., Nishigori, H., Nishigori, T., Mizuno, S., Obara, T., Metoki, H., Sakurai, K., Ishikuro, M., Iwama, N., Tatsuta, N., Nishijima, I., Fujiwara, I., Arima, T., Nakai, K., Sugiyama, T., Kuriyama, S., & Yaegashi, N. (2016). Fermented Food Consumption and Psychological Distress in Pregnant Women: A Nationwide Birth Cohort Study of the Japan Environment and Children’s Study. The Tohoku Journal of Experimental Medicine, 240(4), 309–321.
Taylor, B. C., Lejzerowicz, F., Poirel, M., Shaffer, J. P., Jiang, L., Aksenov, A., Litwin, N., Humphrey, G., Martino, C., Miller-Montgomery, S., Dorrestein, P. C., Veiga, P., Song, S. J., McDonald, D., Derrien, M., & Knight, R. (2020). Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. MSystems, 5(2), e00901-19.
Tenore, G. C., Caruso, D., Buonomo, G., D’Avino, M., Ciampaglia, R., Maisto, M., Schisano, C., Bocchino, B., & Novellino, E. (2019). Lactofermented Annurca Apple Puree as a Functional Food Indicated for the Control of Plasma Lipid and Oxidative Amine Levels: Results from a Randomised Clinical Trial. Nutrients, 11, 122.
Veerapagu, M., & Jeya, K. R. (2017). Evaluation of probiotic characteristics of bacteria isolated from fermented foods. The Pharma Innovation Journal, 6(7), 322–325.
Veiga, P., Pons, N., Agrawal, A., Oozeer, R., Guyonnet, D., Brazeilles, R., Faurie, J.-M., van Hylckama Vlieg, J. E. T., Houghton, L. A., Whorwell, P. J., Ehrlich, S. D., & Kennedy, S. P. (2014). Changes of the human gut microbiome induced by a fermented milk product. Scientific Reports, 4, 6328.
Venegas, D. P., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10(MAR).
Walsh, A. M., Crispie, F., Kilcawley, K., O’Sullivan, O., O’Sullivan, M. G., Claesson, M. J., & Cotter, P. D. (2016). Microbial succession and flavor production in the fermented dairy beverage kefir. MSystems, 1(5), e00052-16.
Wang, L., Alammar, N., Singh, R., Nanavati, J., Song, Y., Chaudhary, R., & Mullin, G. E. (2020). Gut Microbial Dysbiosis in the Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Case-Control Studies. Journal of the Academy of Nutrition and Dietetics, 120(4), 565–586.
Wang, P., Gao, X., Li, Y., Wang, S., Yu, J., & Wei, Y. (2020). Bacillus natto regulates gut microbiota and adipose tissue accumulation in a high-fat diet mouse model of obesity. Journal of Functional Foods, 68, 103923.
Wang, X., Xiao, J., Jia, Y., Pan, Y., & Wang, Y. (2018). Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon, 4(6).
Wati, D. A., Nadia, F. S., Isnawati, M., Sulchan, M., & Afifah, D. N. (2020). The effect of processed Tempeh gembus to high sensitivity C-reactive protein (hsCRP) and high-density lipoprotein (HDL) levels in women with obesity. Potravinarstvo Slovak Journal of Food Sciences, 14, 8–16.
Weng, Y., Yao, J., Sparks, S., & Wang, K. (2017). Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. International Journal of Molecular Sciences, 18(3), 523.
Wilunda, C., Sawada, N., Goto, A., Yamaji, T., Iwasaki, M., Tsugane, S., & Noda, M. (2020). Soy food and isoflavones are not associated with changes in serum lipids and glycohemoglobin concentrations among Japanese adults: a cohort study. European Journal of Nutrition, 59(5), 2075–2087.
Wu, W., Sun, M., Chen, F., Cao, A. T., Liu, H., Zhao, Y., Huang, X., Xiao, Y., Yao, S., Zhao, Q., Liu, Z., & Cong, Y. (2017). Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunology, 10(4), 946–956.
Yu, L., Han, X., Cen, S., Duan, H., Feng, S., Xue, Y., Tian, F., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiological Research, 233, 126409.
Zakerska-Banaszak, O., Tomczak, H., Gabryel, M., Baturo, A., Wolko, L., Michalak, M., Malinska, N., Mankowska-Wierzbicka, D., Eder, P., Dobrowolska, A., Slomski, R., & Skrzypczak-Zielinska, M. (2021). Dysbiosis of gut microbiota in Polish patients with ulcerative colitis: a pilot study. Scientific Reports, 11, 2166.
Zhang, J., Wang, X., Huo, D., Li, W., Hu, Q., Xu, C., Liu, S., & Li, C. (2016). Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Scientific Reports, 6, 32524.
Zhang, X., Shi, Y., Wang, L., Li, X., Zhang, S., Wang, X., Jin, M., Hsiao, C.-D., Lin, H.-W., Han, L., & Liu, K. (2019). Metabolomics for Biomarker Discovery in Fermented Black Garlic and Potential Bioprotective Responses against Cardiovascular Diseases. Journal of Agricultural and Food Chemistry, 67(44), 12191–12198.
Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., Zhang, X., Yang, D., Yang, Y., Meng, H., Li, W., Melgiri, N. D., Licinio, J., Wei, H., & Xie, P. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21(6), 786–796.
Zhu, Y., Zhang, F., Zhang, C., Yang, L., Fan, G., Xu, Y., Sun, B., & Li, X. (2018). Dynamic microbial succession of Shanxi aged vinegar and its correlation with flavor metabolites during different stages of acetic acid fermentation. Scientific Reports, 8, 8612.
Zulkawi, N., Ng, K. H., Zamberi, N. R., Yeap, S. K., Satharasinghe, D. A., Tan, S. W., Ho, W. Y., Abd. Rashid, N. Y., Md. Lazim, M. I., Jamaluddin, A., Alitheen, N. B., & Long, K. (2018). Antihyperglycemic and anti-inflammatory effects of fermented food paste in high-fat diet and streptozotocin-challenged mice. Drug Design, Development and Therapy, 12, 1373–1383.