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Abstract 
The effective and secure gathering of energy consumption data has become essential 
as smart cities develop. High costs, safety hazards, and data latency are some of the 
enduring issues that traditional smart metering infrastructures (SMIs), which depend 
on manual data acquisition, must deal with. In this paper, a novel SMI architecture for 
autonomous, energy-efficient, and resilient smart meter data collection is presented, 
utilizing a self-organizing swarm of Unmanned Aerial Vehicles (UAVs). To guarantee 
system dependability, our design integrates a hierarchical drone network with leader 
and slave drones, backed by strong communication protocols and dynamic task 
reallocation mechanisms. The system's scalability, low latency, and fault tolerance 
are confirmed by means of comprehensive OPNET-based simulations and real-world 
use-case modelling, which includes COVID-19 testing applications. To extend 
operational lifespan, the suggested system also incorporates a battery sizing strategy 
and an energy consumption model. The findings show that UAV swarms can 
significantly improve SMI performance and resilience, which is a big step toward 
smarter and greener urban infrastructure. 
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Introduction 
The rate at which urbanization is taking place globally has raised the demand for more 
clever, innovative, and sustainable ways to manage urban resources, lessen 
environmental impacts, and improve the quality of life for locals. In this context, the 
concept of the "smart city," which is enabled by data-driven decision-making and 
integrated infrastructure, has emerged as a paradigm shift in urban development. This 
paradigm is greatly aided by the Smart Metering Infrastructure (SMI), which provides 
utilities and consumers with accurate, real-time data on energy consumption. This 
ability facilitates better decision-making, promoting energy efficiency and contributing 
to a more sustainable urban future (Kozera, 2018).  Despite the promise of SMI, many 
older systems still rely on manual data collection methods, where staff members 
physically visit buildings to obtain consumption data. There are several serious 
disadvantages to this dependence: 
 
1. High Operational Expenses: Manual data collection entails significant labour, 

transportation, and administrative overhead costs, which rise in isolated or 
densely populated areas.  
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2. Risks to Personnel Safety: Human operators are at risk when working in hazardous 
environments, such as regions with high crime rates, shoddy infrastructure, or 
extreme weather.  

3. Data Inaccuracy and Latency: Manual processes, which are prone to human error 
and inevitably cause delays in data availability, compromise the real-time benefits 
of SMI. 

 
Recent advancements in Unmanned Aerial Vehicle (UAV) technology offer a potent 
alternative to get around these limitations. The following advantages come from 
incorporating UAVs into SMI, which has shown their value in a number of domains: 
 
1. Agility and Accessibility: Unmanned Aerial Vehicles (UAVs) can navigate through 

complex urban landscapes and get to places that are otherwise unsafe or 
inaccessible to humans. 

2. Scalability and Efficiency: Swarms of networked UAVs can significantly reduce 
time and costs by rapidly collecting data from popular smart meters. 

3. Enhanced Safety: The use of UAVs eliminates the need for people to be present 
in dangerous locations, thereby improving public safety. 

4. Improved Timeliness and Data Integrity: With the correct sensors, UAVs can 
download data directly from smart meters, eliminating human error and enabling 
analytics in almost real time. 

 
Despite the increasing popularity of UAV applications in smart cities, there hasn't been 
much focus in the literature on designing a reliable and autonomous UAV-based 
system specifically tailored for smart meter data collection. Current approaches are 
typically not resilient to UAV failures or dynamic environmental changes, nor do they 
optimize swarm behaviour for efficient operation in urban contexts. 
 
To address these shortcomings, this work proposes a novel, self-organizing swarm of 
UAVs-driven Smart Metering Infrastructure (SMI) system that is robust, autonomous, 
and innovative. The primary contributions of this work are as follows: 
 
1. UAV-SMI design and development: We propose a comprehensive system design 

that includes distributed mission control (DMC), swarm coordination protocols, 
communication channels, and a phased operating model for reliable data 
collection.  

2. Sturdy Failure Handling: The system incorporates fault detection, recovery, and 
dynamic task reassignment to ensure uninterrupted operation in the event of UAV 
failures, communication disruptions, or unfavourable environmental conditions. 

3. Extensive Simulation and Validation: Through extensive simulations, we evaluate 
the proposed architecture by looking at parameters like fault tolerance, formation 
stability, data collection effectiveness, and overall system resilience in a range of 
real-world scenarios. 
 

The study contributes to the growing body of research on UAV integration in smart 
city infrastructure and provides a feasible, scalable method for improving the efficacy, 
reliability, and safety of smart metering systems. Ultimately, a framework for resilient 
and sustainable urban energy management is established by the proposed UAV-SMI 
framework. 
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Related Work 
Many research works have been published to facilitate the advancement of UAV in 
different fields as follows:   
 
Applications of UAVs in Smart Cities   
Numerous studies have investigated the use of UAVs for various smart city 

applications in recent years. These uses are numerous and include (Qassab & Ali, 
2022; Peng et al., 2019; Chen et al., 2020; Skorobogatov et al., 2020):   

1. Traffic Monitoring and Management: Public service organizations can react more 
quickly than usual thanks to real-time traffic flow data provided by UAVs fitted with 
cameras and sensors.   

2. Environmental Monitoring and Pollution Control: UAVs can help create healthier 
living spaces by monitoring air quality, identifying pollution sources, and evaluating 
the health of urban vegetation.   

3. Infrastructure Inspection and Maintenance: To prevent failures, UAVs equipped 
with thermal imaging and high-resolution cameras are used to check bridges, 
power lines, and other critical infrastructure segments for damage.   

4. Public Safety and Security: By helping with crowd management, search and 
rescue, and surveillance, UAVs can improve public safety. 

 
UAV Swarm Technology   
While there are advantages to deploying a single UAV, coordinating several UAVs 

into a cooperative swarm can maximize the potential for tasks requiring resilience, 
scalability, and adaptability. UAV swarm technology involves controlling 
interactions among autonomous vehicles and is based on the collective behaviour 
observed in nature (e.g., insect swarms, fish schools, and bird flocks). Among the 
salient characteristics of UAV swarms are (Chung et al., 2018; Craig, 1987; Do et 
al., 2021; Ouyang et al., 2023):  

1. Decentralized Control: Swarms increase resilience by utilizing local interactions 
between individual UAVs to collaborate and accomplish group objectives rather 
than depending on a central controller.  

2. Self-Organization: In dynamic environments, UAV swarms must be able to adjust 
to changing conditions and reconfigure themselves on their own. 

3. Scalability and Fault Tolerance: The system is fault-tolerant, and the swarm size 
can be modified in accordance with mission requirements. Other UAVs make up 
for lost UAVs to keep the mission going. 

 
UAV-Based Smart Metering Systems   
Research has also explored UAVs for smart meter data collection with different 
approaches (Liu et al., 2023; Qassab & Ali, 2022; Saffre et al., 2021; Abiodun et al., 
2018; François-Lavet et al., 2018):   
1. Single UAV Deployment: A single UAV visits each smart meter to collect data. 

Although simple, this method lacks scalability for large-scale deployments.   
2. Static UAV Deployment: UAVs are positioned at fixed points to collect data, 

eliminating the need for continuous flight, but may not suit dynamic data needs.   
Our proposed system leverages a self-organizing UAV swarm to overcome these 
limitations, providing scalable, efficient, and resilient smart meter data collection. 
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Methodology 
System Design and Architecture 
 
System Overview 
The proposed UAV swarm-based SMI system, as shown in Figure 1, comprises two 
primary components:  

1. Data Management Center (DMC): Acts as the central command and control 
hub for the entire system. It is responsible for mission planning, swarm 
configuration, data processing and analysis, and communication with external 
systems. 

2. UAV Swarm: Consists of a designated Leader Drone (LD) and multiple Slave 
Drones (SDs). The LD coordinates the swarm's actions, relays instructions from 
the DMC to the SDs, aggregates data collected by the SDs, and transmits it 
back to the DMC. The SDs are responsible for collecting data from individual 
smart meters using their onboard sensors. 
 

Data Management Center (DMC) 
The DMC serves as the central nervous system of the SMI architecture, responsible 
for: 

1. Mission Planning and Configuration: Human operators interact with the DMC to 
define mission parameters, such as the target area for data collection, desired 
swarm formation, data collection frequency, and any specific waypoints or flight 
paths the swarm should follow. 

2. Swarm Configuration and Management: The operator selects the number of 
SDs to deploy, assigns a specific drone as the LD, and monitors the status of 
individual drones within the swarm through a user-friendly interface. 

3. Data Processing and Analysis: The DMC receives data collected by the UAV 
swarm, processes it to extract relevant information, performs analysis to identify 
consumption patterns or anomalies, and generates reports for further action or 
decision-making. 

4. Communication and Interfacing: The DMC establishes communication links 
with the LD using a reliable wireless communication protocol. It also interfaces 
with external systems, such as utility company databases or energy 
management platforms, to share data and facilitate integration with existing 
infrastructure. 

 
Figure Error! No text of specified style in document.1: The proposed system 

procedural diagram. 
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UAV Swarm: Leader Drone (LD) and Slave Drones (SDs) 
Leader Drone (LD) 
The LD plays a critical role in swarm coordination and communication. It is responsible 
for: 

1. Receiving Mission Instructions: The LD receives detailed mission parameters 
from the DMC, including GPS waypoints, desired swarm formation, and data 
collection instructions. 

2. Relaying Instructions to SDs: The LD disseminates mission instructions 
received from the DMC to the SDs, ensuring synchronized swarm movements 
and task execution. 

3. Monitoring Swarm Status: The LD continuously monitors the status of individual 
SDs, including battery levels, location, and sensor readings. It relays this 
information back to the DMC for real-time situational awareness. 

4. Aggregating Data from SDs: As SDs collect data from smart meters, they 
transmit it to the LD, which aggregates the data from all SDs and periodically 
sends it back to the DMC for processing and analysis. 
 

Slave Drones (SDs) 
The SDs are the workhorses of the system, responsible for: 

1. Following LD Instructions: SDs receive and execute instructions from the LD, 
maintaining formation during flight, deploying to specific locations, and initiating 
data collection sequences. 

2. Data Collection from Smart Meters: SDs are equipped with appropriate sensors 
to collect data from smart meters, this may involve Optical Character 
Recognition (OCR) to read data from traditional meters or wireless 
communication protocols to interface with smart meters directly. 

3. Transmitting Data to the LD: Once data is collected, SDs transmit it wirelessly 
to the LD for aggregation and eventual transmission to the DMC. 
 

Communication Protocols and Data Exchange 
Efficient and reliable communication between the DMC, the LD, and the SDs is crucial 
for successful swarm operation. 

• DMC to LD Communication: We propose utilizing a robust wireless 
communication protocol, such as 4G/LTE or potentially 5G in areas with 
coverage, for communication between the DMC and the LD. This ensures a 
stable connection with sufficient bandwidth for transmitting mission data and 
receiving status updates and aggregated data from the swarm. 

• LD to SD Communication: For communication between the LD and SDs, a 
suitable wireless local area network (WLAN) protocol, such as Wi-Fi or Zigbee, 
can be employed. These protocols offer high data rates, low latency, and 
energy efficiency, essential for maintaining swarm coordination and exchanging 
data effectively. 
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Operational Phases 
The operational cycle of the proposed UAV swarm-based SMI system can be broken 
down into three distinct phases, see Figure 2: 
 
DMC Phase (Initialization and Configuration) 

1. Swarm Power-Up: The operator powers up the required number of SDs and the 
designated LD. 

2. Connection Establishment: The LD establishes a secure connection with the 
DMC, and the SDs connect to the LD, forming the swarm network. 

3. Mission Information Upload: The operator defines mission parameters (e.g., 
target GPS coordinates, swarm formation, data collection frequency) through 
the DMC interface. The DMC transmits this information to the LD. 

4. SD Configuration: The LD receives the mission information and configures each 
SD with its specific role and tasks for the mission. 
 

Flying Phase (Transit and Formation) 
1. Swarm Launch: Upon receiving the launch command from the DMC, the LD 

initiates takeoff, followed by the SDs. 
2. Formation Establishment: The LD guides the SDs to form the pre-defined 

swarm formation (e.g., linear, grid) while navigating towards the target area. 
3. Waypoint Navigation: The LD, following the designated flight path and 

waypoints, leads the swarm to the target location for data collection. The SDs 
maintain their relative positions within the formation throughout the flight. 
 

Data Collection Phase (Deployment and Sensing) 
1. Target Area Arrival: The LD, upon reaching the designated target area, signals 

the SDs to prepare for deployment. 
2. SD Deployment: The SDs autonomously deploy to their assigned locations 

within the target area, following a pre-defined deployment strategy to ensure 
efficient coverage of smart meters. 

3. Data Acquisition: SDs activate their onboard sensors and collect data from the 
designated smart meters. The data collected may include energy consumption 
readings, voltage levels, and other relevant parameters. 

4. Data Transmission to LD: Each SD transmits its collected data wirelessly to the 
LD for aggregation. 

5. LD Aggregation and Transmission to DMC: The LD aggregates the data 
received from all SDs and periodically transmits it back to the DMC using the 
established long-range communication link. 

6. Mission Completion and Return: Upon receiving confirmation from the DMC 
that sufficient data has been collected, the LD initiates the swarm's return to the 
launch site, maintaining formation throughout the flight back. 
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Figure 2: Main system state diagrams: (a) System overview (b) Operational 
modes. 

 
 
Ensuring System Reliability: Robust Failure Handling 
Real-world deployments of UAV swarms are susceptible to various uncertainties, 
including drone malfunctions, communication interruptions, and unpredictable 
environmental conditions. To ensure system reliability and mission success even in 
the presence of such challenges, we have incorporated robust failure-handling 
mechanisms into our design, see Figure 3: 
 
Leader Drone (LD) Failure Handling 
LD failure poses a significant risk to mission success as it acts as the central 
coordinator of the swarm. To address this, we implement a multi-layered approach: 

1. Backup LD Designation: During the initialization phase, the operator designates 
a specific SD as the backup LD. This backup LD possesses all the capabilities 
of the primary LD and remains on standby throughout the mission. 

2. Hard Handover (Immediate LD Failure): In the event of a sudden and 
unexpected LD failure (e.g., collision, loss of communication), the backup LD 
immediately takes over the leadership role. It assumes responsibility for swarm 
coordination, data aggregation, and communication with the DMC, ensuring 
minimal disruption to the mission. 

3. Soft Handover (Predicted LD Failure): To further enhance resilience, we 
introduce a novel failure prediction mechanism. The LD continuously monitors 
its onboard sensors (e.g., battery level, temperature) and can predict potential 
failures in advance. If the LD anticipates a failure, it initiates a soft handover 
process, transferring leadership to the designated backup LD before the failure 
occurs. This proactive approach allows for a smoother transition and potentially 
extends the operational life of the failing LD by allowing it to enter a power-
saving mode. 
 

Slave Drone (SD) Failure Handling 
While SD failures are less critical compared to LD failure, they can still impact overall 
mission efficiency. To address SD malfunctions, we implement: 

1. Dynamic Task Reallocation: If an SD fails or becomes unresponsive, the LD 

 
(a) 

 

 
 

(b) 
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dynamically reassigns its tasks to other available SDs within the swarm. This 
ensures that all designated smart meters are covered, maintaining data 
collection continuity. 

2. Failure Isolation: The LD isolates the failed SD from the swarm network to 
prevent potential communication interference or disruption to other operational 
drones. 

3. Optional Return to Base: Depending on the severity of the failure and mission 
parameters, the LD can instruct the failed SD to return to the base station 
autonomously for maintenance or replacement. 
 

Environmental Disturbance Mitigation 
Operating in real-world urban environments exposes the UAV swarm to various 
environmental disturbances, such as wind gusts and obstacles. To mitigate the impact 
of such disturbances: 

• Robust Formation Control Algorithm: The swarm utilizes a robust formation 
control algorithm that considers environmental factors and adjusts drone 
positions and movements dynamically to maintain formation integrity and 
prevent collisions. 

• Onboard Sensors for Obstacle Avoidance: Each drone is equipped with 
onboard sensors (e.g., cameras, ultrasonic sensors) to detect and avoid 
obstacles autonomously, ensuring safe navigation through complex urban 
environments. 
 

 

                 
Figure 3: Failure handling diagrams. 
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Performance Analysis and Implementation Issues 
This section focuses on evaluating and validating the proposed Smart Metering 
Infrastructure (SMI) framework introduced in the previous chapters. The validation 
involves a real-world use case – a COVID-19 testing application – simulated using the 
OPNET network simulation tool. The section further explores energy consumption 
calculations and proposes a security model for the system. 
 
The Proposed System in a Healthcare Application: A COVID-19 Use Case 
We introduce a timely and relevant application of the proposed SMI framework: a 
Portable Health Clinic (PHC) system using a UAV swarm for automated COVID-19 
testing during lockdown situations. This application highlights the system's potential 
to provide essential services with minimal human intervention and risk, especially in 
challenging scenarios, see Figure 4. 
 
The Proposed Swarm-Based System Architecture 
Figure 5 depicts the system architecture, featuring three operational layers: 

• Drone Level: Consists of Slave Drones (SDs) collecting COVID-19 test data 
and a Leader Drone (LD) aggregating the information and communicating with 
the local clinic. 

• Local Clinic Level (DMC): Manages multiple drone swarms, oversees data 
processing, and escalates critical cases to the general hospital. 

• General Hospital Level: Provides the highest level of medical expertise, 
resources, and supervision for COVID-19 containment. 

Figure 4 further illustrates the hierarchical distribution of roles within this architecture, 
emphasizing scalability and efficient management. 
 

 
Figure 4: The suggested system layered architecture. 

 
The Proposed Swarm-Based System Description 
Figure 5 illustrates the operational procedure of the PHC system. The system 
leverages a UAV swarm equipped with testing sensors to perform contactless COVID-
19 screening at people's doorsteps. A triage system categorizes the case severity, 
and appropriate actions are taken, including alerting the local clinic, providing 
precautionary instructions, or initiating a video call with a doctor. This automated 
process enhances efficiency, reduces human risk, and enables timely medical 
intervention. 
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Figure Error! No text of specified style in document.: The proposed Portable 

Health Clinic (PHC) system operational procedure. 
 
The Roles and Responsibilities of the Proposed Swarm-Based System Units 
This section details the roles and responsibilities of each system unit, emphasizing 
hierarchical distribution and collaborative functionality: 

• Local Clinic (DMC): Houses the drone swarm, manages mission information, 
receives swarm status reports, interacts with patients, and escalates cases to 
the general hospital when needed. 

• Slave Drones (SDs): Perform individual testing procedures, collect vital signs 
data, apply the COVID-19 triage process, provide instructions to residents, and 
report cases to the LD. 

• Leader Drone (LD): Coordinates the swarm, manages SD deployments, 
communicates with the DMC, and handles failure scenarios. 

• Person Being Tested: Follows drone instructions, provides vital signs data, and 
participates in video calls with doctors if needed. 

• General Hospital: Acts as the highest medical authority, provides specialist 
consultation, manages critical cases, and conducts contact tracing. 

The system operates in two modes: dynamic (flying) and static (fixed), each with 
specific tasks and communication patterns. 
 
The Simulation Model Using OPNET 
The chapter presents a simulation model developed using the OPNET network 
simulation tool to validate the system's performance (Qaddoori et al., 2023; Ali, 2008; 
2009; 2016; 2018). The model, using a map of Ashti City 1 in Erbil, Iraq, aims to 
realistically simulate swarm operation, communication patterns, and network 
behaviour. 
 
Assumptions and Initial Settings 
The simulation model is built with several assumptions to simplify complexity while 
maintaining realism. Table 1 summarizes the initial settings of the simulation model, 
including simulation time, number of drones, network span area, distances between 
system components, and adopted technology parameters. 
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Table 1: The initial settings of the simulation model 

Simulation Parameter Value 

Simulation Time  15 minutes 

Number of drones 1 to 100 (no video call) 
1 to 14 (video call) 

Network span area  2 Km x 2 Km 

Distance between drones and 
formation 

12 meters with the linear formation 

Distance between swarm and 
WiMax BS 

1 Km 

Distance between swarm DMC and 
WiMax BS 

1 Km 

 
 
4G adopted technique settings 

WiMax technology 
Modulation and coding: 64-QAM 3/4 
Scheduling type: rtPS 
Max. sustained traffic rate: 10 Mbps 
Min. reserved traffic rate: 5 Mbps 

 
 
WLAN adopted technique settings 

802.11a (OFDM) 
Data rate: (6,18, 36, 54) Mbps 
Node buffer size = 1M bit 
packet processing 
rate=(5000,10000,20000) pkt/s 
Block ACK: EDCA (802.11e) 
disabled/enabled 
WLAN MTU = WiMAX MTU = 1500 byte 

Swarm status Landed, power-saving enabled and 
gathering data. 

 
 
Traffic Profiles 
Table 2 describes the two main traffic profiles used in the simulation: 

• Traffic Profile 1: Periodic status reports exchanged between SDs, the LD, and 
the DMC. 

• Traffic Profile 2: Video call traffic added when medical consultation is needed. 
These profiles are designed to mimic realistic communication patterns within the 
system. 
 
 

Table 2: Traffic profiles of the simulated drone swarm. 

Traffic 
Profile 

Application Description 

 
 
 
1 

SD 
reporting 
status 
 

(SD→LD: statusReportSD) 
Packet length = 13 byte 
Packet rate = 0.1 packet/s 

(LD→SD: ACK) 
Packet length = 2 byte 
Packet rate = 0.1 packet/s 

LD reporting 
status 

(LD→DMC: statusReportLD) 
Packet 
length=12x(**nx12)byte 
Packet rate = 0.033 packet/s 

(DMC→LD: ACK) 
Packet length = 2 byte 
Packet rate = 0.033 
packet/s 
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2 

SD 
reporting 
status 

(SD→LD: statusReportSD) 
Packet length = 13 byte 
Packet rate = 0.1 packet/s 

(LD→SD: ACK) 
Packet length = 2 byte 
Packet rate = 0.1 packet/s 

LD reporting 
status 

(LD→DMC: statusReportLD) 
Packet length = 12*(n*12) 
byte 
Packet rate = 0.033 packet/s 

(DMC→LD: ACK) 
Packet length = 2 byte 
Packet rate = 0.033 
packet/s 

Case 
reporting 

(SD→LD→DMC: 
caseReport) 
Packet length = 500 byte 
Packet rate = event-driven 

(DMC→LD→SD: ACK) 
Packet length = 2 byte 
Packet rate = event-driven 

 
Video call 

(SD →LD→ DMC: video conference) available 
resolutions: 
Bandwidth requirements = 2Mbit/s, 4Mbit/s, 6Mbit/s. 
Frame rate = 30 frame/s. 

**n: Number of SDs in the swarm. 
 
 
Results and Discussion 
This section presents the simulation results and analyzes the system's performance 
based on several networking metrics. Here's an overview of the simulation scenarios 
and key results: 
 
Scenario 1: No Video Call 

• Focus: This scenario assesses the system's performance under normal 
operating conditions, where drones exchange periodic status reports (traffic 
profile 1) without any video calls. 

• Variables: The simulation tests various data rates (54, 36, 18, and 6 Mbps), 
swarm sizes (1 to 100 UAVs), and packet processing rates (5000, 10000, and 
20000 packets/second). 

• Key Findings: 
o High Throughput, Primarily over WLAN: The system achieved high 

throughput, mainly attributed to the efficient exchange of status reports 
within the swarm over WLAN. WiMAX throughput was significantly lower 
as it only involved periodic communication between the LD and DMC. 

o Low Latency: The latency was consistently low (250-350 microseconds) 
due to minimal network traffic. 

o Scalability: Increasing the number of UAVs didn't significantly affect 
throughput or latency, indicating good system scalability when handling 
status reports. 
 

Scenario 2: Video Call Scenarios (2Mbit/s, 4Mbit/s, 6Mbit/s) 
• Focus: These scenarios evaluate the system's performance when handling 

video calls for remote medical consultations, adding significant data traffic to 
the network (traffic profile 2). 

• Variables: Each video call scenario (2Mbit/s, 4Mbit/s, 6Mbit/s) is tested with 
varying data rates, a limited number of simultaneous video calls (14, 6, and 4 
respectively), and different packet processing rates. 

• Key Findings: 
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o Throughput Bottleneck: WiMAX becomes the primary bottleneck, limiting 
the number of simultaneous video calls due to its lower bandwidth 
compared to WLAN. 

o Latency Impact: Latency increases significantly with higher video 
resolutions and lower data rates. 

o WLAN Efficiency: WLAN consistently demonstrated lower latency than 
WiMAX, especially at lower data rates. 

o  
Scenario 3: Enabling EDCA 

• Focus: This scenario investigates the impact of enabling Enhanced Distributed 
Channel Access (EDCA), a Quality of service (QoS) mechanism in 802.11e, on 
latency. 

• Variables: The simulation compares latency with and without EDCA for different 
video resolutions at a fixed data rate (54 Mbps) and packet processing rate 
(10000 packets/second). 

• Key Findings: EDCA effectively reduced latency by about 3%, particularly with 
higher traffic loads (more video calls). This improvement highlights the benefits 
of QoS mechanisms for prioritizing critical data traffic. 

•  
Additional Findings: 

• Packet Data: The number of packets sent and received by SDs was almost 
identical due to the dominance of bidirectional video call traffic. 

• Data Traffic: The total data traffic transmitted over WLAN was noticeably higher 
than WiMAX due to the additional headers required for WLAN frames. 

• Packet Loss: The measured packet loss was less than 5%, considered 
acceptable for this application. 

 
The obtained results are summarized in Table 3 below. 

 
Table 3: Summary of the obtained results. 

Scenario Avg. Latency 
(μs) 

Throughput 
(Mbps) 

Packet 
Loss (%) 

Max Video 
Call Capacity 

No Video 
Call 

250–350 6–10 
(WLAN), <1 
(WiMAX) 

<1% N/A 

Video Call 
(2 Mbps) 

400–500 5.5 (WiMAX) ~3% 14 
simultaneous 
calls 

Video Call 
(4 Mbps) 

650–700 9.2 (WiMAX) ~4% 6 simultaneous 
calls 

Video Call 
(6 Mbps) 

>800 11.4 
(WiMAX) 

~5% 4 simultaneous 
calls 

EDCA 
Enabled 

↓ ~3% latency 
across 
scenarios 

Similar 
throughput 

Slight 
improvement 

— 
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Energy Consumption Analysis 
A critical aspect of designing a practical and sustainable UAV swarm-based SMI 
system is analyzing and optimizing energy consumption. In this section, we examine 
the energy expenditure associated with various phases of swarm operation and 
propose a battery sizing strategy to ensure sufficient mission duration. 
 
Energy Consumption during Swarm Flight 
We assume a distance of 1 km between the swarm's DMC and the target data 
collection area. With a flying speed of 12 km/hr in matrix formation, the swarm requires 
approximately 5-6 minutes to reach its destination, considering formation and 
deployment time. 
 
Energy Consumed by Drone's Rotors 
The selected drone model, DJI Phantom 4 Pro V2.0, has a battery capacity of 5870 
mAh at 15.2V, providing approximately 89.2 Wh of energy. This translates to a 
maximum flight time of around 30 minutes without any payload. However, our system 
incorporates a payload of approximately 200g per drone, consisting of sensors, a 
processing unit, and additional batteries. 
Based on research [16] on drone payload impact on power consumption and flight 
time, Figure 6 illustrates the relationship between payload weight, power consumption, 
and flight time. 
 

            
Figure 6: Drone's Payload Relation with Power Consumption and Flight Time 

 
The additional payload weight increases power consumption and reduces flight time. 
Using equation (1), we calculate the payload-to-weight ratio: 
Payload (%) = (Payload weight / Original drone weight) × 100% …………….. (1) 
Table 4 presents the payload-to-weight ratios for both LD and SD. 
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Table 4: Payload-to-weight ratio 

Drone 
Type 

Drone Weight (g) Payload (g) Payload-to-Weight Ratio (%) 

LD 1375 201.6 14.7 

SD 1375 198 14.4 

 
With a payload of approximately 15% of the drone's weight, Figure 6 indicates an 
increase in power consumption by about 20%, resulting in a 20% reduction in flight 
time. Consequently, the drones with payload have an estimated flight time of 24 
minutes. 
The total flight time for a mission, considering multiple data collection sessions and 
repositioning between target locations, can be calculated using equation (2): 
 
Total Flight Time = 2 × DMC Flight Time + (n × Repositioning Flight Time) ... (2) 
 
Where 'n' represents the number of data collection sessions. Repositioning flight time 
is estimated to be 1 minute per session. 
 
Power Consumed by Networking 
During the flight, the swarm utilizes communication profile 1, as described in Section  
involving status report messages between SDs, the LD, and the DMC. Additionally, 
the LD broadcasts the "MoveToWaypoint" message every 0.2 seconds to coordinate 
SDs during flight, with corresponding acknowledgements (ACKs). 
Using OPNET simulations for a swarm with 1 LD and 10 SDs, we quantified the data 
traffic transferred during flight, as shown in Table 5. 
 

Table 5: System Data Traffic (bps) during Flight 
 
 
 
 
 
 
 
 
 
 
Power Consumption during Swarm Data Collection 
Upon reaching the target area and deploying, the SDs initiate data collection by 
recording video for 1 minute per person to assess vital signs. This data is processed 
onboard using MATLAB on a Raspberry Pi for case classification (healthy, suspicious, 
infected, emergency). In case of an infected or emergency case, a "caseReport" 
message is sent to the LD and DMC, potentially triggering a 5-minute video call for 
remote diagnosis. 
 

We assume a 2%-3% infection rate in hotspot areas Saffre et al., (2021), 
leading to one case requiring escalation per swarm every 30 minutes. Each SD is 
assigned to a single house, with an assumed data collection time of 30 minutes per 
house. 

From To Data Rate (bps) 

SD LD 8549 

LD SD 9621 

LD DMC 44 

All SDs LD 85490 

DMC LD 10 
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Power Consumed When No Video Call 
During normal operation with no escalated cases, only status reports are exchanged 
(profile 1). Table 6 presents the data traffic in this scenario. 
 

Table 6: System Data Traffic (bps) during Data Collection with No Video Call 
 
 
 
 
 
 
 
 
 
 
Power Consumed with One Video Call 
In this scenario, one SD classifies a case as infected or emergency, triggering a 
"caseReport" message and a 5-minute video call through the LD. Table 7 presents 
the data traffic for this session. 
 
 

Table 7: Data Traffic (bps) during One Video Call 
 
 
 
 
 
 
 
 
 
This video call requires a 2 Mbps bandwidth for both WiMAX and WLAN, leading to a 
significant increase in energy consumption. 
 
Battery Sizing and System Lifetime 
To determine the required battery capacity and system lifetime, we consider the 
energy consumption during flight, data collection, and repositioning, ensuring 
equation (3) is satisfied: 
 
Battery Capacity > (2 × DMC Round Trip Energy) + (NUAV × (One Session Energy + 
Repositioning Flight Energy)) ………………………………………………………. (3) 
Where 'NUAV' represents the number of data collection sessions per drone 
 
Based on energy consumption calculations and considering a 30-minute session with 
one potential video call, Table 8 presents the estimated operational duration for 
different battery configurations. 
 
 
 

From To Data Rate (bps) 

SD LD 372 

LD SD 64 

LD DMC 44 

All SDs LD 3714 

DMC LD 10 

From To Data Rate (bps) 

SD LD 1144896 

LD SD 1144896 

LD DMC 1024533 

DMC LD 1024533 
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Table 8: Swarm Operation Durability in Ideal Circumstances 

 
The maximum operating time for the proposed system, limited by the drone battery, 
is 6 hours, encompassing 12 data collection sessions. Extending mission duration 
would require additional batteries for the drones. 
 
Adopted Technology and Hardware 
To ensure feasibility and practicality, the proposed system relies on established 
technology and commercially available hardware. Table 9 outlines the adopted 
networking protocols. 
 
 

Table 9: Networking Protocols Adopted by the System 

Protocol Abbreviation Description 

Dynamic Host 
Configuration 
Protocol version 6 

DHCPv6 
Automatically provides network 
configurations (IP address, subnet 
mask, gateway) to a host. 

User Datagram 
Protocol 

UDP 
Transport layer protocol for efficient 
data transmission. 

Internet Protocol 
version 6 

IPv6 
Network layer protocol enables a 
large address space and improved 
routing. 

Institute of Electrical 
and Electronics 
Engineers 802.11a 

IEEE 802.11a 
Wireless networking standard for 
high-speed data transmission. 

Worldwide 
Interoperability for 
Microwave Access 

WiMAX 
Broadband cellular network 
standard for long-range wireless 
connectivity. 

802.11e Enhanced 
Distributed Channel 
Access 

802.11e EDCA 
Provides Quality of Service (QoS) for 
prioritizing critical data traffic. 

 
Following established research (Liu et al., 2023; Qassab & Ali, 2022), we adopt the 
DJI Phantom 4 Pro V2.0 as the UAV platform for both LD and SDs. Table 10 
summarizes the drone's specifications (Qassab & Ali, 2022). 
 
 
 
 
 

Battery Type Max. Number of Sessions 
Max. Operating 
Time (hours) 

Drone Battery (LD) 12 6 

Drone Battery (SD) 12 6 

Raspberry Pi Battery (LD) 28 14 

Raspberry Pi Battery (SD) 15 7.5 
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Table 10: Specifications of the DJI Phantom 4 Pro V2.0 Drone 

Category Specifications 

Aircraft and 
Camera 

Weight: 1375 g, Diagonal Size (Propellers Excluded): 350 mm, Max 
Ascent Speed (S-mode): 6 m/s, Max Ascent Speed (P-mode): 5 m/s, 
Max Descent Speed (S-mode): 4 m/s, Max Descent Speed (P-mode): 
3 m/s, Max Speed (S-mode): 72 km/h, Max Speed (A-mode): 58 km/h, 
Max Speed (P-mode): 50 km/h, Max Wind Speed Resistance: 10 m/s, 
Max Flight Time: Approx. 30 minutes, Satellite Positioning Systems: 
GPS/GLONASS, Hover Accuracy Range (with GPS Positioning) 
Vertical: ±0.5 m, Hover Accuracy Range (with GPS Positioning) 
Horizontal: ±1.5 m, Camera Sensor: 1-inch CMOS, Effective pixels: 
20M, Max Video Bitrate: 100Mbps, Supported SD Card: microSD, 
Capacity: 128GB 

Infrared 
Sensing 
System 

Obstacle Sensory Range: 0.2-7 m, FOV (Horizontal): 70°, FOV 
(Vertical): ±10°, Measuring Frequency: 10 Hz, Operating Environment: 
Surface with diffuse reflection material, and reflectivity > 8 percent 
(such as walls, trees, humans, etc.) 

Intelligent 
Flight 
Battery 

Capacity: 5870 mAh, Voltage: 15.2 V, Battery Type: LiPo 4S, Energy: 
89.2 Wh, Net Weight: 468 g, Charging Temperature Range: 5° to 40°C, 
Max Charging Power: 160 W 

 
Table 11 details the payload elements attached to the drones, along with their weights. 
 

Table 11: Drone's Payload Elements and Their Weights 

Payload Element 
Weight 
(g) 

LD 
Payload 

SD 
Payload 

Raspberry Pi 3 B 42 Yes Yes 

Arducam OV5647 Camera 9 No Yes 

Li-Polymer Battery HAT for Raspberry Pi, 
SW6106 Power Bank Solution 

76 Yes Yes 

EHAO 104060 3000mAh Lipo Rechargeable 
Battery (extra battery) 

48 Yes Yes 

Navio2 Autopilot Flight Controller 23 Yes Yes 

SIM7600E HAT WiMAX Adapter 12.6 Yes No 

Total Weight (g) 201.6   

Total Weight (g) 198   

 
The Raspberry Pi serves as the onboard processing unit. The camera is used by SDs 
for data collection. A battery hat with a 3000mAh battery powers the Raspberry Pi, 
and an additional 3000mAh battery provides extra capacity. The Navio2 flight 
controller enables the Raspberry Pi to control the drone's flight, and the WiMAX 
adapter facilitates long-range communication between the LD and the DMC. 
 
Conclusion  
This paper presented a novel and resilient SMI architecture leveraging a self-
organizing UAV swarm for efficient, scalable, and reliable smart meter data collection. 
Our system integrates robust failure-handling mechanisms, dynamic task allocation 
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strategies, and advanced communication protocols to ensure continuous operation in 
dynamic and unpredictable environments. Extensive simulations validated the 
system's effectiveness, demonstrating high formation accuracy, rapid failure recovery 
times, and the ability to adapt to various challenging scenarios. 
 
Future research will focus on further enhancing system capabilities: 

1. Decentralized Control Algorithms: Exploring fully decentralized control 
algorithms to enhance swarm autonomy, eliminate the single point of failure 
associated with the LD, and enable more complex, distributed decision-making 
within the swarm. 

2. Communication Optimization for Large Swarms: Investigating and 
implementing adaptive communication protocols that dynamically adjust data 
transmission rates and frequencies based on swarm size, distance from the 
DMC, and environmental conditions to minimize communication overhead and 
extend operational range. 

3. Advanced Failure Prediction Using Machine Learning: To create more complex 
failure prediction models for individual drones, machine learning algorithms 
trained on historical data and real-time sensor readings are incorporated. This 
could further improve system reliability, maximize drone utilization, and allow 
proactive maintenance.  

4. Integration with Other Smart City Sensors and Systems: In order to develop a 
more comprehensive and networked urban data platform, we are investigating 
the integration of our suggested SMI system with other smart city sensors and 
systems, such as those used for environmental sensing, traffic monitoring, and 
infrastructure inspection.  

5. Prototype Validation: To improve practical applicability, future research will 
include a field test or small-scale prototype of the proposed UAV swarm system. 
This hands-on validation will help verify simulation results, assess system 
performance in dynamic scenarios, and adjust crucial parameters for practical 
application. 

 
By addressing these research avenues, we can unlock the full potential of UAV 
swarms for revolutionizing smart city applications, contributing to the development of 
more efficient, sustainable, and resilient urban environments. 
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